On Generalized Digital Search Trees with Applicationsto a Generalized Lempel - Ziv

نویسندگان

  • Wojciech Szpankowski
  • Jing Tang
چکیده

The goal of this research is twofold: (i) to analyze generalized digital search trees, and (ii) to derive the average proole (i.e., phrase length) of a generalization of the well known parsing algorithm due to Lempel and Ziv. In the generalized Lempel-Ziv parsing scheme, one partitions a sequence of symbols from a nite alphabet into phrases such that the new phrase is the longest substring seen in the past by at most b ? 1 phrases. The case b = 1 corresponds to the original Lempel-Ziv scheme. As expected, such a scheme can be analyzed by considering a generalized digital search tree in which every node is capable of storing up to b strings. Such a digital tree is known as b-digital search tree. In this paper, we concentrate on investigating the depth of a randomly selected node in such a tree. We apply analytical techniques of analysis of algorithms to establish the mean, the variance and the limiting distribution of the depth. Based on these results, we infer the probabilistic behavior of a randomly selected phrase in the generalized Lempel-Ziv algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Towards Analytical Information Theory: Recent Results on Lempel-Ziv Data Compression Schemes

The Lempel-Ziv algorithms are well-known dynamic dictionary algorithms of use in data compression. The talk shows how analytic models originally developed for the analysis of tries and digital search trees may be used to characterize their compression characteristics.

متن کامل

Traveling Front Solutions to Directed Diffusion Limited Aggregation Digital Search Trees and the Lempel-Ziv Data Compression Algorithm

We use the traveling front approach to derive exact asymptotic results for the statistics of the number of particles in a class of directed diffusion-limited aggregation models on a Cayley tree. We point out that some aspects of these models are closely connected to two different problems in computer science, namely, the digital search tree problem in data structures and the Lempel-Ziv algorith...

متن کامل

Parallel Lempel Ziv Coding

We explore the possibility of using multiple processors to improve the encoding and decoding times of Lempel–Ziv schemes. A new layout of the processors, based on a full binary tree, is suggested and it is shown how LZSS and LZW can be adapted to take advantage of such parallel architectures. The layout is then generalized to higher order trees. Experimental results show an improvement in compr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995